Biomedical Applications of Functionalised Carbon Nanotubes

Abstract

This chapter describes the developing potential of carbon nanotubes (CNTs) in biomedicine. Methodologies to render nanotubes biocompatible, the related studies on cell uptake, applications in vaccine delivery, interaction with nucleic acids and impact on health will be described. The use of CNTs for biomedical applications is acquiring more and more substantiating evidence for efficient development. It is clear that some important issues related to the health impact including the biodistribution, accumulation and elimination have to be addressed more thoroughly before CNTs can be proposed for clinical trials. However, CNTs show remarkable carrier properties, with a very strong tendency to cross cell membranes. Although, the toxicological studies on pristine CNTs are contradictory, showing a certain degree of risk, it is becoming evident that functionalised CNTs have reduced toxic effects. Therefore, the combination of cell uptake capacity with high loading of cargo molecules achievable with CNTs makes this new carbon nanomaterial a promising candidate for innovative therapies

Publication
Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes
Silvia Giordani
Silvia Giordani
Full Professor Chair of Nanomaterials

My research interests are in the design, synthesis, and characterization of hybrid smart nanomaterials for biomedical, energy and environmental applications